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The role of phonon scattering in carbon nanotube field-effect transistorssCNTFETsd is explored by
solving the Boltzmann transport equation using the Monte Carlo method. The results show that
elastic scattering in a short-channel CNTFET has a small effect on the source-drain current due to
the long elastic mean-free pathsmfpd s,1 mmd. If elastic scattering with a short mfpwere toexist
in a CNTFET, the on current would be severely degraded due to the one-dimensional channel
geometry. At high drain bias, optical phonon scattering, which has a much shorter mfps,10 nmd,
is expected to dominate, even in a short-channel CNTFET. We find, however, that inelastic optical
scattering has a small effect in CNTFETs under modest gate bias. ©2005 American Institute of
Physics. fDOI: 10.1063/1.1923183g

Carbon nanotube field-effect transistorssCNTFETsd are
now being explored for high-performance electronics.1,2 A
recently reported CNTFET with a channel length of,50 nm
appears to deliver a near-ballistic current.3 This is a surpris-
ing result, because under high drain bias the channel is ex-
pected to be several mean-free-pathssmfpsd long. Previous
studies have shown that the dominant scattering mechanism
in a high-quality carbon nanotubesCNTd is phonon
scattering.4–7 Under low bias, the mfp is observed to be very
long in CNTss,1 mmd, and is thought to be nearly elastic
and limited by acoustic phononsAPd scattering.5 Under high
bias, optical phononsOPd emission dominates, and short
s,10 nmd mfps result. In metallic CNTs, OP emission leads
to a high-bias saturation current of,25 mA for a long tube
and a significant decrease of channel conductance for a short
tube.6,7 Studies of phonon scattering in CNTs have focused
on metallic tubes or on long semiconducting tubes.8 Phonon
scattering in short-channel CNTFETs, which is important for
nanoelectronic applications, remains unexplored.

In this letter, we show that near-ballistic dc currents can
be obtained for a short-channel CNTFET even under high
source-drain bias in the presence of significant inelastic scat-
tering. The results indicate that elastic scattering has a small
effect on the source-drain current for a short-channel CNT-
FET when the elastic mfp is long. If, however, a short elastic
mfp were to exist in a CNTFET, elastic scattering would
degrade the on current of CNTFETs much more severely
than it does for a typical metal–oxide–semiconductor field-
effect transistorsMOSFETd. This difference results from the
difference between one-dimensionals1Dd transport in a CNT
and two-dimensionals2Dd transport in a MOSFET channel,
and generally applies to all nanotube/nanowire transistors
with 1D channel geometry.9

To treat phonon scattering in CNTFETs, we simulate
semiclassical transport by the Monte CarlosMCd method
self-consistently coupled to the Poisson equation. The valid-
ity of a semiclassical approach for treating a short-channel
CNTFET sLch,20 nmd was first confirmed by a full quan-
tum simulation under ballistic conditions.10 The MC simula-
tion simulates stochastic carrier trajectories and has been ex-

tensively applied to study the dissipative carrier transport in
Si MOSFETs.11 It has also been applied to study carrier
transport in CNTs,8 and calibrated to experiments for a me-
tallic tube with length down to,50 nm.6 Two scattering
mechanisms have been identified to be important in metallic
CNTs,6 and were included in this study, acoustic phonon
scattering and OP scatteringsincluding phonons with both
small wave vectork,0 and largek near the Brillouin zone
edged.7

We describe the first conduction subbandE-k using a
simple analytical expression derived from apz orbital tight-
binding model,12

E = "nFsÎk2 + k0
2 − k0d, s1ad

whereE is the kinetic energy," is the Planck constant,nF
<8.03107 cm/s is the Fermi velocity in a metallic tube,
and k0=2/s3dd, where d is the diameter of the tube. The
corresponding density of statessDOSd is

DsEd = D0 ·
uE + Du

ÎsE + Dd2 − D2
QsEd, s1bd

whereD0=4/sp"nFd is the constant DOS of a metallic tube,
and D is one-half of the band gap, andQsxd equals 1 forx
.0 and 0 forxø0. Only the lowest subband is treated; the
effect of higher subbands will be discussed later.

In a metallic tube, the scattering rates and mfps are en-
ergy independent due to the constant DOS near the Fermi
level, but in a semiconducting tube, the scattering rates and
mfps are energy dependent. Note that the band structure of a

adElectronic mail: guoj@ece.ufl.edu FIG. 1. Scattering rate vs carrier kinetic energy in the lowest subband.
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semiconducting tube at high energies approaches that of a
metallic tube, so the mfps of a semiconducting tube at high
energies,lelastic

high and lOP
high also approach those of a metallic

tube. The scattering rate in a semiconducting tube, as shown
in Fig. 1, is computed by

1

tsEd
=

nF

lelastic
high

DsEd
D0

+
nF

lelastic
high

DsE − "vOPd
D0

, s2d

wherelelastic
high =500 nm is a typical high-energy mfp for AP

scattering,lOP
high=15 nm is a typical high-energy mfp for OP

scattering, and"vOP=0.16 eV is a typical OP energy.6 Only
OP emission was treated because at thermal equilibrium,
"vOP@kBT, so the phonon population is small.sThe effect
of hot phonons will be discussed later.d

Pauli blocking is an important factor that is treated using
a rejection technique as described by Lugli.13 The carrier
distribution function is updated after each time step, so that
when a scattering event occurs, the probability that the final
state is available can be evaluated. A random number be-
tween 0 and 1 then determines whether the scattering is per-
mitted. To treat transistor electrostatics, Poisson’s equation is
solved self-consistently with the transport simulation. Two
types of contacts are treated. For a CNT MOSFET with
doped tubes as source/drain shown in Fig. 2sad,14 the con-
tacts are assumed to be idealswithout reflectiond. For CNT
Schottky barriersSBd FETs as shown in the inset of Fig.
4sad,15 we treat the tunneling of carriers through metal-CNT
junctions as follows. For a carrier injected to a SB, the trans-
mission probability through the SB is evaluated using the
Wentzel–Kramers–Brillouin approximation. A random num-
ber between 0 and 1 is then generated to determine whether
the carrier tunnels through the SB or gets reflected. Such an
approach has been previously developed to treat Si SBFETs,
and validated by experiments for a channel length of
,30 nm.16

We first simulated a CNT MOSFET with doped tubes as
source/drain extensions, as shown in Fig. 2sad. To explore the
role of elastic scattering in CNTFETs, we first treated only
elastic scattering in the CNT channel and omitted OP scat-
tering slop

high→ +`d. For a long elastic mfp oflelastic
high

=500 nmfwhich is typical for a high-quality CNTsRef. 6d,
and results in a thermal average mfpklelasticl,90 nm near
the top of the barrierg, the transistor delivers,80% of the
ballistic on current, as shown by the dashed line in Fig. 2sbd.

Elastic scattering has a rather small effect because of the
long elastic mfp. In contrast, for a short elastic mfp of
lelastic

high =15 nmswhich corresponds to a thermal average mfp
of klelasticl,3 nm near the top of the barrierd, the transistor
only delivers,10% of the ballistic current, as shown by the
dashed-dotted line.

Compared to a Si MOSFET, elastic scattering has a
much stronger effect for a CNTFET. It has been reported that
Si MOSFETs with a channel length several times longer than
the elastic scattering mfpsdue to, for example, surface
roughness scatteringd can still operate at nearly 50% of the
ballistic limit.17,18This difference results from the difference
between 1D carrier transport in a CNT channel and 2D in a
MOSFET channel. For a MOSFET, the finalk states for an
elastic scattering event distribute inskx,kyd plane. For most
final states, a carrier does not possess enough backward ve-
locity along the channel direction after an elastic scattering
event to overcome the barrier, and return to the source. For
this reason, scattering near the drain has much less of an
effect on ID than scattering near the source end of the
channel.19 sOf course, scattering near the drain causes the
space-charge density to build up, which has an indirect,
though potentially strong, effect on the current of a short-
channel MOSFET.d20,21 In contrast, for a carrier with a wave
vector +k in a CNT, the only available final state after a
scattering event is −k, because of the one-dimensional chan-
nel geometry. The magnitude of carrier velocity along the
channel direction remains unchanged and the carrier can
overcome the top of the barrier and return back to the source.
Elastic scattering anywhere in the channel affects the source-
drain current equally. The effect of a short-mfp-elastic scat-
tering in a nanotube/nanowire transistor is much more severe
that in a typical MOSFET. Because the elastic mfps are so
long, however, we do not expect elastic scattering to have a
strong effect on short-channel CNTFETs.

We next explore the role of inelastic optical phonon scat-
tering, which has a much shorter mfp, and scatters carriers
even in a short CNT at high biases.6,7 The circles in Fig. 2sbd
show the current-voltagesID-VDd characteristics in the pres-
ence of both elastic scatteringswith lelastic

high =500 nmd and OP
scatteringswith lelastic

high =15 nmd. Compared to theID-VD only
in the presence of elastic scatteringswith lelastic

high =500 nm and
lOP

high→`d, as shown by the dashed line, a short mfp OP
scattering has little effect onID. Figure 3sad, which plots a
snapshot of the steady-state carrier distribution at on state,
explains the reason. Before a carrier injected from the source
reaches the top of the barrier, Pauli exclusion suppresses OP
emission. As shown in Fig. 3sad, the −k states below the top
of the barrier at the source end of the tube are filled accord-
ing to the source Fermi level, and are full. OP emission low-

FIG. 2. Scattering in CNT MOSFETs:sad A coaxially gated CNTFET with
doped source/drain. The tube diameter isd,1.4 nm with a band gapEg

,0.6 eV. The total tube length is 50 nm, with an intrinsic channel ofLch

=20 nm, and a doped source/drain ofLS=LD=15 nm. The gate oxide thick-
ness istox=3 nm, and the dielectric constant isk=16. sbd The simulatedID

vs VD at VG=0.4 V for five cases:sid solid: Ballistic transport,sii d crosses:
OP scattering only, withlOP

high=15 nm andlelastic→`, siii d dashed: Elastic
scattering only, withlelastic

high =500 nm andlOP→`, sivd Circles: elastic and
OP scattering withlelastic

high =500 nm andlOP
high=15 nm, andsvd dash-dot:

Strong elastic scattering withlelastic
high =15 nm andlOP→`.

FIG. 3. Optical phonon scattering in CNTFETs:sad A snapshot of the elec-
tron distribution at the steady state forVD=VG=0.4 V with lOP

high=15 nm and
lelastic

high =500 nm. The solid line shows the first subband edge.sbd A sketch for
OP scattering at a large gate overdrive.E-k at the top of the barrier,Etop, is
also shown.mS andmD are the source and drain Fermi levels, respectively.
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ers the carrier energy by"vOP, which results in a final state
that is already occupied. Such a scattering event is prohibited
by Pauli exclusion. After the carrier travels over the top of
the barrier, OP emission can occur. Such OP emission, how-
ever, does not affect the dc source-drain current. At modest
gate bias, the top of the barrier,Etop, is only modestly below
the source Fermi levelsmS−Etop,"vOPd. After OP emission,
a carrier loses energy of"vOP s,0.16 eVd, and it does not
have enough energy to overcome the barrier and return to the
source. The large OP energys"vOP,0.16 eVd in CNTs
helps the transistor to deliver a near-ballistic dc current at
modest gate biases, although a significant amount of scatter-
ing exists near the drain end of the channel. We also simu-
lated theID-VD characteristics in the presence of only OP
scattering withlOP

high=15 nm andlAP
high→`, as shown by the

crosses in Fig. 2sbd. The transistor essentially delivers a bal-
listic source-drain current, which further confirms that the
effect of short-mfp OP scattering is small.

We also explored the role of phonon scattering under
high gate voltages, which pushes the top of the barrier,Etop,
well below the source Fermi level,mS, as shown in Fig. 3sbd.
The results indicate that oncemS−Etop."vOP, OP scattering
begins to significantly affect the source-drain current. For a
carrier injected with energyE.Etop+"vOP, after an OP
emission event, the carrier is still energetic enough to over-
come the top of the barrier and return back to the source. The
result is that the current contributed by carriers withE
.Etop+"vOP is significantly reduced by OP scattering.

Because most CNTFETs, to date, operate like SB
transistors,15 it is important to examine whether our under-
standing of CNT MOSFETs is relevant to CNT SBFETs. As
shown in the inset of Fig. 4sad, the simulated CNTFET is
similar to a recently reported CNTFET with Pd contacts,3

except that coaxial-gate geometry is used. The main panel of
Fig. 4sad plots theID versusVD at the ballistic limitsthe solid
lined, and with scatteringsthe dashed lined. Again, we find
that the CNT SBFET also delivers a near-ballistic source-
drain current for the following reason. The elastic scattering
has a small effect because of its long mfp. For OP scattering
in the channel, a carrier loses energy of"vOP after OP emis-
sion. Because of the large OP energys,160 meVd, the back-
scattered carrier faces a much thicker and higher tunneling
barrier, as shown in Fig. 4sbd. Because the tunneling prob-
ability exponentially decreases with the SB thickness and
height, the chance for the scattered carrier to return back to
the source significantly decreases. OP scattering, therefore,

has little effect on the source-drain current at modest gate
biases in a SB CNTFET.

As mentioned earlier, only the first subband is treated in
this study, but an energetic carrier near the drain end of the
channel can scatter to higher subbands. After a carrier is
scattered to a higher subband, however, the potential barrier
between the carrier and the source increases, and it becomes
more difficult for the carrier to return back to the source.
Intersubband scattering, therefore, will not change the con-
clusion that inelastic scattering has a small effect on the dc
current. As also mentioned earlier, only OP emission was
treated, because essentially no optical phonons are present at
thermal equilibrium. Optical phonons, however, can build up
and be reabsorbed by source-injected electrons. Detailed
treatment of hot phonon effects requires solving electron-
phonon-coupled Boltzmann transport equation, which is be-
yond the scope of this study. Simple estimation shows that
most OPs are emitted when +k going electrons are backscat-
tered, and therefore, they possess a wave vector along +k
direction. When such OPs are reabsorbed, electrons are scat-
tered toward the drain rather than back to the source, which
does not lower the source-drain dc current. Our neglect of
OP phonon emission and intersubband scattering is justified
because this study is concerned with the effect of scattering
on the dc current under high-bias conditions.
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FIG. 4. Scattering in CNT SBFETs:sad ID vs VD at VG=0.4 V for ballistic
transportssolid lined, and in the presence of both elastic and OP scattering
with lelastic

high =500 nm andlOP
high=15 nm sdashed line with circlesd. The inset

shows the simulated CNTFET with metal source/drain. The SB height for
electrons isfBn=0, the intrinsic channel length is 50 nm, and the tube
diameter isd,1.4 nm withEg,0.6 eV. The gate oxide thickness is 8 nm
with a dielectric constant ofk=16. sbd A snapshot of the electron distribu-
tion at the steady state forVD=VG=0.4 V with OP and elastic scattering.
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