Device Simulation for Carbon Nanotube Electronics

Jing Guo
Department of ECE, University of Florida
Gainesville, FL, 32611

1. Introduction
2. NEGF formalism
3. Simulation Approach
4. Device Analysis
5. Summary
Acknowledgements

Theory: Mark Lundstrom, Supriyo Datta (Purdue)
Experiment: Hongjie Dai, Ali Javey (Stanford)
Carbon nanotubes

Top-down and bottom-up view

Top-down view

- **Gate**
- **S**
- **D**
- **E**
- **mobility**
- **k**

Semiclassical approach

applicable only when quantum effects not important

Bottom-up view

- **Gate**
- **atomistic p_2 orbitals**

Quantum approach

- tunneling at M/CNT contacts
- tunneling and interference in the CNT
Quantum simulation for Nanoelectronics

Challenges in nanoscale device simulation:

1) description at an atomistic level
2) quantum description of open systems under bias
3) treatment of inelastic scattering

Our approach: the Green’s function formalism
Outline

1. Introduction
2. NEGF formalism
3. Simulation Approach
4. Device Analysis
5. Summary
One contact

in-flow: \(\frac{\gamma}{\hbar} D(E-U)f_0 \)

current:

out-flow: \(\frac{\gamma}{\hbar} N_E \)

\[
\frac{dN_E}{dt} = \frac{\gamma}{\hbar} \left[D(E-U)f_0(E-E_F) - N_E \right]
\]

\[
N = \int dE D(E-U)f_0(E-E_F)
\]

Datta, *Quantum Transport Atom to Transistor*, Cambridge Univ. Press, 2005
Two contacts

in-flow: \(\frac{\gamma_1}{\hbar} D(E-U) f_1 \)

out-flow:

\[\frac{\gamma_1}{\hbar} N_E \]

\[\frac{\gamma_2}{\hbar} N_E \]

\[\frac{\gamma_2}{\hbar} [D(E)f_2 - N_E] \]

\[\frac{dN_E}{dt} = \gamma_1 \left[D(E)f_1 - N_E \right] + \gamma_2 \left[D(E)f_2 - N_E \right] \]
Two contacts

\[N = \int dE \ D(E-U) \left[\frac{\gamma_1 f_1 + \gamma_2 f_2}{\gamma_1 + \gamma_2} \right] \]

\[I = \frac{2q}{h} \int dE D(E-U) \frac{\gamma_1 \gamma_2}{\gamma_1 + \gamma_2} [f_1 - f_2] \]

\[U = U_L + U_0(N - N_0) \]

Multiple levels

\[\epsilon \rightarrow [H] \]
\[\gamma \rightarrow [\Gamma] \]
\[N \rightarrow [\rho] \]
\[G = [ES - H - \Sigma]^{-1} \]
Non equilibrium Green’s Function (NEGF)

\[
G = \left[EI - H - \Sigma_1 - \Sigma_2 - \Sigma_S \right]^{-1}
\]

Charge density (ballistic)
\[
[\rho] = \int \left[A_1(E) f_1(E) + A_2(E) f_2(E) \right] \frac{dE}{2\pi}
\]

Current
\[
I_D = \frac{2q}{h} \int T(E) \left(f_1(E) - f_2(E) \right) dE
\]

\[
A_{1,2}(E) = G \Gamma_{1,2} G^+
\]

\[
T(E) = \text{Trace}[\Gamma_1 G \Gamma_2 G^+] \]

\[
\Gamma_{1,2} = i[\Sigma_{1,2} - \Sigma_{1,2}^+] \]
Outline

1. Introduction
2. NEGF formalism
3. Simulation Approach
4. Device Analysis
5. Summary
Real-space basis (ballistic)

Recursive algorithm for G^r: $O(m^3N)$

Lake et al., JAP, 81, 7845, 1997
Real-space results

Gate

2nd subband
interference

band gap

Confined states

E [eV]

x [nm]
Mode-space approach (ballistic)

\[k_q = \frac{2\pi q}{c} \]

The \(q \)th mode

\[H_q = \begin{bmatrix} u_1 & b_q \\ b_q & u_2 & t \\ & t & u_3 & \ddots \\ & & \ddots & \ddots & b_q \\ & & & b_q & u_N \end{bmatrix} \]

- \(\Sigma_S (1,1) \) and \(\Sigma_D (N,N) \) analytically computed
- Computational cost: \(O(N) \)
 real space \(O(m^3N) \)
Mode-space results

Conduction band profile (ON)

2 modes
real space

2 modes
real space

Coaxial G

$V_D = 0.4V$

$E_1 [eV]$

$x [nm]$

G_{ate}

p^{++} Si

SiO$_2$

8nm HfO$_2$

Pd

Pd

CNT
Treatment of M/CNT contacts

$E_F \quad \phi_{B0} \quad E_C \quad E_V$

$\sqrt{\alpha t}$

metallic tube band

ϕ_{B0} : band discontinuity

$\sum_m \approx \begin{bmatrix} -i\alpha & 0 \\ 0 & 0 \\ \vdots \end{bmatrix}$
Treatment of M/CNT contacts

Gate

Metal S

metal D

\[V_D = V_G = 0.4 \text{V} \]

Charge transfer in unit cell: Leonard et al., APL, 81, 4835, 2002
3D Poisson solver

Method of moments:

\[V(\vec{r}) = \int K(\vec{r} - \vec{r}') \rho(\vec{r}') d\vec{r}' \]

Electrostatic kernel:

\[K(\vec{r} - \vec{r}') \]

\[K(\vec{r} - \vec{r}') \] for 2 types of dielectrics available in Jackson, Classical Electrodynamics, 1962
Numerical techniques

- Non-linear Poisson

- Recursive algorithm for
 \[G(E) = [EI - H - \sum_S - \sum_D]^{-1} \]

- Gaussian quadrature for doing integral

- Parallel different bias points

- ~20min for full I-V of a 50-nm CNTFET
Outline

1. Introduction
2. NEGF formalism
3. Simulation Approach
4. Device Analysis
5. Summary
Device issues

nanotube diameter ~1.7 nm
L_{ch} ~50 nm

Javey et al, Nano Lett., 2004

1) Can we model and understand I-V?
2) How close to the ballistic limit?
3) What is the role of scattering?
4) How to optimize I_{ON}?
5) How to reduce I_{off}?
6) How to compare to Si MOSFETs?
Modeling I_D-V_G

SB height: $\phi_{BP}=0$, $d_{CNT}\sim1.7\text{nm}$ $R_S=R_D\sim1.7\text{K}\Omega$

![Graph showing the relationship between I_D and V_G with experimental and theoretical curves.]

- $V_D=-0.3\text{V}$
- -0.2V
- -0.1V

- $-I_D$ [\mu\text{A}]
- V_G [V]
Two kinds of transistors

MOSFET

SBFET

Carbon nanotubes as Schottky barrier transistors
Heinze et al, PRL, 89, 106801, 2002
Ambipolar conduction (thin oxide)

$\log I_D$ vs V_G

- Hole conduction at low V_G
- Electron conduction at high V_G

Barrier thickness set by t_{ins} (geometric screening)
Thick oxide

opaque barrier for electron tunneling

barrier thickness set by t_{ins} (geometric screening)

How close to ballistic limit?

SB height: $\phi_{Bp}=0$, $d_{CNT}\sim 1.7\text{nm}$, $R_S=R_D\sim 1.7\text{K}\Omega$

\Rightarrow Deliver near-ballistic DC on-current
No surface roughness scattering in CNTs

phonon scattering dominates in CNTs

Phonon scattering in CNTs

AP: long mfp \((\lambda_{1}^{\text{high}} \sim 1\mu\text{m}) \)
OP: short mfp \((\lambda_{2}^{\text{high}} \sim 10\text{nm}) \)

Park, Rosenblatt, Yaish et al., Nano Lett., 4, 517
Small effect of OP scattering

\[\omega \sim 0.16eV \]

OP/ZBP emission

\[E_{FS} \]

\[E_{FD} \]

\[E \]

Position, \(x \)

\[\Rightarrow \]

Deliver near-ballistic DC on-current

confirmed by a separate Monte-Carlo simulation
How close to the ballistic limit?

\[\phi_{Bp} = 0 \]

\[\text{zero SB still limits } I_D \]

Guo and Lundstrom, *IEEE TED*, 49, 1897, 2002 (silicon)
Improving I_{ON}: Scaling t_{ins}

Barrier thickness set by t_{ins} (geometric screening)
Reduce I_{off} for thin t_{ins}

$$\Delta_n \sim \Delta_p \sim \frac{E_g - eV_D}{2}$$

$E_g \sim 0.8 \text{eV/d(nm)}$

small d_{CNT} reduces I_{min}
Reduce I_{off} using MOSFET-like structure

chemical S/D doping
Chen et al., IEDM Tech Dig, 2004
Javey et al., Nano Lett., 2005

electrical S/D doping
Appenzeller et al, PRL, 2004
Reduce I_{off} using MOSFET-like structure

SB CNTFET

- Electron leakage
- Hole leakage

MOSFET-like CNTFET

- Electron leakage negligible

Ambipolar $\Delta_n \sim \Delta_p \sim \frac{E_g - eV_D}{2}$

Unipolar $\Delta_p \sim E_g$

Suppressed ambipolar conduction
How to compare to Si MOSFET?

Si MOSFETs vs CNT array FETs

Si Channel

W

Key device metrics:

I_{ON}/I_{OFF}

$\tau = C_G V_{DD}/I_{ON}$
Control of V_T shifts the window

$$\tau = C_G V_{DD} / I_{ON}$$
Compare to 90nm Si MOSFETs

90nm Si n-MOS data from Antoniadis and Nayfeh, MIT
Outline

1. Introduction
2. NEGF formalism
3. Simulation Approach
4. Device Analysis
5. Summary
Summary: Simulation Approach

Quantum Transport (NEGF formalism)
 - Atomistic description
 - Non-equilibrium transport
 - Inelastic scattering

Three dimensional Electrostatics
 - Method of moments

Computational techniques
 - recursive algorithm
 - mode-space approach
 - parallel simulation
Summary

1) I-V can be modeled and explained.
2) The CNTFET delivers near-ballistic I_{ON}
3) Scaling t_{ins} and using high-κ improves I_{ON}
4) Thin t_{ins} results in ambiploar conduction
5) Using small d_{CNT} tube or MOSFET-like structure suppresses ambipolar conduction
6) The CNTFET performance is promising
Outlook:

Transistors
- 3D electrostatics
- phonon scattering
- Advanced transistor structures
- AC characteristics

New devices
- CNT optoelectronic devices
- CNT-based nanosensors